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We report a study of the decays B0 ! J= K(�)0�+��, which involve the creation of a u�u or d �d
quark pair in addition to a �b ! �c(c�s) decay. The data sample consists of 110 pb�1 of p�p collisions
at
p
s = 1:8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995.

We measure the branching ratios to be BR(B0 ! J= K�0�+��) = (8:0 � 2:2 � 1:5) � 10�4 and
BR(B0 ! J= K0�+��) = (1:1 � 0:4 � 0:2) � 10�3. Contributions to these decays are seen from

 (2S)K(�)0, J= K0�0, J= K�+��, and J= K1(1270).

PACS numbers: 13.25.Hw, 14.40.Nd

The measured inclusive branching ratio for B ! J= X
of (1:16� 0:10)% is considerably larger than the sum of
the individual branching ratios of the known exclusively
reconstructed decays [1]. One possible source of the miss-
ing decay modes is a class of decays in which a quark pair
is created in addition to a �b ! �c(c�s) decay. The CLEO
collaboration recently reported observing one such mode,
B ! J= �K [2], which involves an s�s quark pair. This
analysis studies similar B0 decays that involve u�u or d �d
quark pairs, an example of which is shown in Fig. 1.

�d
�b

d

�d

d
�s

c
�c

B0

J= 

K0

S

�0

FIG. 1: Example of a �b ! �c(c�s) decay with a d �d quark pair
and spectator.

These modes are potentially useful for CP violation
measurements. For example, J= K0

S�
0 is accessible from

both B0 and �B0 which allows CP violation due to inter-
ference between decays with and without mixing. An
angular analysis of the decay products could separate
the CP -even and -odd contributions. If the factorization
hypothesis [3] holds, a time dependent analysis of the
angular correlations could measure cos(2�) in a manner
similar to B0 ! J= (K�0 ! K0

S�
0) [4].

This analysis was performed using p�p collisions
recorded with the CDF detector, which is described in
detail elsewhere [5]. For this analysis the important com-
ponents are the Silicon Vertex Detector (SVX), the Cen-
tral Tracking Chamber (CTC), and the central muon
systems. The SVX provides a track impact parameter
resolution of � (13 + 40=pT ) �m, where pT (in GeV=c)
is the component of the momentum transverse to the
p�p collision axis (the z axis) [6]. The CTC is a drift
chamber whose charged particle momentum resolution is
ÆpT =p

2
T � 0:001=(GeV=c). Two muon systems separated

by 60 cm of steel cover the region j�j < 0:6 for muons
with pT > 1:4 GeV=c. Each of these central muon sys-
tems consists of four layers of planar drift chambers. The
inner system is separated from the interaction point by an
average of �ve interaction lengths of material. An exten-
sion to the central muon systems covers 0:6 < j�j < 1:0.
This analysis uses a three-level dimuon trigger. The

�rst level selects events with two separate sets of at
least three linked hits in the muon chambers that cover
j�j < 1:0. The second level requires drift chamber tracks
with pT > 2:0 GeV=c which extrapolate to the linked
hits in the muon chambers. The third level accepts
J= ! �+�� candidates with a reconstructed invari-
ant mass between 2.8 and 3.4 GeV=c2. In addition to
this trigger path, approximately 10% of the events which
pass the level 3 dimuon trigger come from single muon
triggers at levels 1 and 2 with muon pT thresholds of
either 7.5 GeV=c or 12 GeV=c.
The o�ine analysis reconstructs J= ! �+�� candi-

dates but does not require them to be the same candidate
which passed the trigger. The o�ine reconstruction only
uses muons which intersect both of the muon systems
that cover j�j < 0:6.
A ratio of branching ratios is measured between a sig-

nal mode B0 ! J= K(�)0�+�� and a well established
reference mode B0 ! J= K(�)0 [1]:

BRsig

BRref

=
�ref
�sig

Nsig

Nref

(1)

Many systematic uncertainties cancel in this ratio. The
ratio of eÆciencies R� = �ref=�sig is determined with a
Monte Carlo simulation. The number of signal and ref-
erence events (Nsig and Nref ) are measured in the data
while applying similar selection criteria to both signal
and reference decay modes. The only selection criteria
which di�er are those placed upon the two extra pions
of the signal events for which there are no equivalents in
the reference decays.
From the dimuon trigger events, B0 decay candidates

are selected which satisfy the basic topology of the de-
cays of interest. The reference modes are reconstructed
by combining a J= ! �+�� candidate with either a
K0
S ! �+�� orK�0 ! K+�� candidate. K0

S candidates
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are required to have an invariant mass between 485 and
510 MeV=c2 and to point back to the J= decay vertex.
Additionally, the K0

S candidates' decay vertices are re-
quired to have a positive displacement in the xy plane
from the J= decay vertex with at least 5� signi�cance.
K�0 candidates are required to have an invariant mass
between 820 and 970 MeV=c2 and to originate from the
J= candidate decay vertex. To reduce backgrounds, all
�nal state particles are required to have pT > 0:5 GeV=c,

to be within �R �
p
��2 +��2 < 1:0 of each other,

and to originate within 5 cm of each other in z. The sig-
nal modes are reconstructed identically to the reference
modes, except for the addition of two pions which origi-
nate from the J= candidate decay vertex. The invariant
mass of these two extra pions, m(�+��), is required to
be greater than 0:55 GeV=c2.
The �nal vertex �t constrains the particles to originate

from a common vertex, except the K0
S daughters whose

combined momentum must point back to that vertex.
For this �t, the invariant masses of the K0

S and J= can-
didates are constrained to their world average measured
values [1]. The �2 of the �t is required to have a con�-
dence level above 0:1%.
If there are multiple B0 decay candidates in the same

event, all candidates are kept. Multiple candidates have
the largest e�ect in the B0 ! J= K�0�+�� sample
where misassignments of theK and � from theK�0 result
in a broad Gaussian shaped background. Multiple candi-
dates do not signi�cantly a�ect the B0 ! J= K0

S�
+��

sample.
To reduce background levels, additional selection cri-

teria are placed on the transverse momentum of the
neutral kaon, pT (K

(�)0), the proper decay time of the
B0 candidate, ct(B), and a B0 isolation variable, I �
pT (B)=(pT (B)+pT (x)). The quantity pT (x) is the scalar
sum of the transverse momenta of all non-B0 candidate
tracks within �R < 1:0 of the B0 candidate momentum
direction. For each signal mode these selection criteria
are optimized to maximize S2=(S + Bkg) of the signal
sample where S is the expected signal size and Bkg is
the expected background size. This optimization uses
the sidebands of the invariant mass distribution of the
signal data and the invariant mass distribution of the
reference data.
The optimized selection criteria for B0 !

J= K�0�+�� are pT (K
�0) > 2:4 GeV=c,

ct(B) > 170 �m, and I > 0:60. Figure 2(a) shows
the resulting invariant mass peak. The data are �t using
the sum of a narrow and a broad Gaussian and a linear
background. The width of the narrow Gaussian is �xed
to 11:8 MeV=c2, based upon the expected width from
the Monte Carlo simulation scaled up by the ratio of
widths between the data and Monte Carlo simulation
for the reference mode B0 ! J= K�0. The �t results
in 36:3 � 9:9 signal events. The B0 ! J= K�0 refer-
ence mode with similar selection criteria has 257 � 18

signal events. The ratio of reconstruction eÆciencies
between B0 ! J= K�0 and B0 ! J= K�0�+�� is
R� = 3:75. These numbers lead to a ratio of branch-
ing ratios of BR(B0 ! J= K�0�+��)=BR(B0 !
J= K�0) = 0:53 � 0:15, where the error is statisti-
cal only. Using BR(B0 ! J= K�0) = 1:5 � 10�3

[1], this corresponds to a branching ratio of
BR(J= K�0�+��) = (8:0� 2:2)� 10�4.
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FIG. 2: Invariant masses of B0 candidates for B0 !
J= K�0�+�� (a) and B0 ! J= K0

S�
+�� (b).

The �nal state J= K�0�+�� could come from the in-
termediate states B0 !  (2S)K�0 or B0 ! J= K�0�0.
Within �2� of the B0 invariant mass shown in Fig. 2(a),
there are 9  (2S) ! J= �+�� candidates on an ex-
pected background of 3 within �10 MeV=c2 of the  (2S)
mass of 3.686 GeV=c2 [1]. The remaining signal can-
didate events have higher J= �+�� invariant masses.
There is no identi�able resonant structure in the �+��

invariant mass distribution to indicate a large �0 contri-
bution, nor is there any identi�able resonant structure to
the K�0�� or K�0�+�� invariant mass distributions.

The optimized selection criteria for the B0 !
J= K0

S�
+�� sample are pT (K

0
S) > 1:0 GeV=c, ct(B) >

30 �m, and I > 0:50. This sample has less intrinsic back-
ground than the B0 ! J= K�0�+�� sample since the
invariant mass peak of the K0

S is narrower than that of
the K�0 and its decay vertex is additionally displaced
from the J= decay vertex. To take advantage of this
lower background, events that do not have enough SVX
information to make a precise ct determination are in-
cluded in a separate optimization which does not re-
strict ct(B). The selection criteria for this sample are
pT (K

0
S) > 1:9 GeV=c and I > 0:70. These two samples

are combined in Fig. 2(b). A �t yields 21:0� 6:3 signal
candidates.

The signal width is �xed in the �t to � = 11:3 MeV=c2,
based upon the expected width from the Monte Carlo
simulation scaled up by the ratio of widths between the
data and Monte Carlo for the reference mode B0 !
J= K0

S. Allowing this width to oat results in a �tted
width which is approximately half the expected width.
The excess of events at the B0 mass is robust across
a wide range of selection criteria and is broader when
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other selections are applied. The normalized mass dis-
tribution (mB � 5:28 GeV=c2)=�mB has � = 0:67� 0:21
and 16:2 � 5:6 events. The unusual narrowness appears
to be primarily an artifact of this particular set of selec-
tion criteria which optimized the expected S2=(S+Bkg).
Varying the width by �20% a�ects the �tted signal size
by less than 2%.
The ratio of eÆciencies, R� = 4:98, combined

with 84:1 � 9:9 B0 ! J= K0
S reference events

leads to a ratio of branching ratios of BR(B0 !
J= K0

S�
+��)=BR(B0 ! J= K0

S) = 1:24� 0:40, where
the error is statistical only. Using BR(B0 ! J= K0

S) =
(8:9�1:2)�10�4 [1] leads to BR(B0 ! J= K0

S�
+��) =

(1:1� 0:4)� 10�3.
Unlike B0 ! J= K�0�+��, B0 ! J= K0

S�
+��

shows evidence of several substructure contributions in
addition to  (2S)K0

S candidates. The �+�� and K0
S�

�

invariant mass plots shown in Fig. 3 have an excess
of signal over background in the �0 and K�� invari-
ant mass regions, indicating possible contributions from
B0 ! J= K0

S�
0 and B0 ! J= K�+��. The back-

grounds are estimated from the �+�� and K0
S�

� invari-
ant mass distributions of the candidates in the B0 mass
sidebands.
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FIG. 3: m(�+��) (a) and m(K0
S�

�) (b) for J= K0
S�

+��

events within �2� of the B0 invariant mass.

To �t for these contributions, the B0 invariant mass
peaks for two samples of events are considered. Events
in sample X have a K�� ! K0

S�
� candidate with an in-

variant mass within 0:892�0:051 GeV=c2. Sample Y con-
tains events which have a �0 ! �+�� candidate with an
invariant mass within 0:770�0:150 GeV=c2 while exclud-
ing events in sample X . The m(�+��) > 0:55 GeV=c2

requirement is not placed upon sample X . Neither sam-
ple has any  (2S) candidates. The invariant mass peaks
of the B0 candidates in these samples are �tted us-
ing a Gaussian signal of �xed width and a linear back-
ground. Figure 4 shows the results with sample X hav-
ing 12:5� 4:6 �tted signal events and sample Y having
8:5� 3:8 �tted signal events.
Within �2� of the B0 mass, sampleX has 21 events on

a background of 9.2; sample Y has 14 events on a back-
ground of 7.3. These numbers of events lead to Feldman-
Cousins 95% con�dence intervals [7] for the signal size of
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FIG. 4: B0 candidate invariant masses for events with a K��

candidate (a) and those with a �0 candidate but no K��

candidate (b).

[4.1, 22.6] and [1.1, 15.6] for samples X and Y , respec-
tively. Using the �tted number of signal events and the
eÆciencies for B0 ! J= K0

S�
0 and B0 ! J= K�+��

for each of the samples, the resulting branching ratios
are BR(B0 ! J= K0

S�
0) = (5:8 � 3:1) � 10�4 and

BR(B0 ! J= K�+��) = (8:3�4:4)�10�4 with a corre-
lation coeÆcient of -0.43. These branching ratios assume
that these two modes are the dominant contributions to
the two samples and that they do not interfere in the
overlap region of their K0

S�
+�� Dalitz plot.

The J= �+�� invariant mass plot of Fig. 5(a) shows 4
 (2S) candidates on an expected background of 0.3. It is
possible that B0 ! J= K0

S�
0 and J= K�+�� come from

B0 ! J= K1(1270). Figure 5(b) shows an excess in the
K0
S�

+�� invariant mass distribution near K1(1270) but
there is also a small excess of events at higher K0

S�
+��

invariant masses. The backgrounds are estimated from
the J= �+�� and K0

S�
+�� invariant mass distributions

of the candidates in the B0 invariant mass sidebands.
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FIG. 5: m(J= �+��) (a) and m(K0
S�

+��) (b) for
J= K0

S�
+�� events within �2� of the B0 invariant mass.

The results are summarized in Table I. The domi-
nant uncertainty in these branching ratios is the statisti-
cal uncertainty due to the small signal size. Many of the
systematic uncertainties cancel in the ratio of branching
ratios with the reference mode. The systematic uncer-
tainties that do not cleanly cancel are summarized in
Table II and described as follows.
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J= K�0�+�� J= K0�+�� J= K0�0 J= K�+��

Nobs 85 39 14 21
Bkg 54.0 21.1 7.32 9.22
Sfit 36:3� 9:9 21:0� 6:3 8:5� 3:8 12:5 � 4:6
SFC [13.9, 50.8] [7.1, 31.8] [1.1, 15.6] [4.2, 22.6]
Sref 257� 18 84:1� 9:9 84:1 � 9:9 84:1 � 9:9
R� 3.75 4.98 | |
BR (8:0� 2:2 � 1:5) � 10�4 (1:1� 0:4� 0:2)� 10�3 (5:8� 3:1� 1:2) � 10�4 (8:3� 4:4 � 1:7)� 10�4

TABLE I: Summary of results: Number of observed events (Nobs); Fitted background (Bkg); Fitted signal (Sfit); Feldman-
Cousins 95% con�dence interval on the signal size (SFC); Fitted number of reference mode signal events (Sref ); Ratio of
eÆciencies (R�); and the branching ratio (BR) where the �rst uncertainty is statistical and the second is systematic.

BR(B0 ! J= K�+��) % Uncertainty
Source of Uncertainty K = K�0 K = K0

Reference Mode BR 11 14
Helicity Model 9.9 9.4
Signal Width 7.5 |
Trigger Model 5.0 5.0
Monte Carlo Composition 5.0 5.0
B0 Production Model 2.5 2.5
Combined Uncertainties 18 18
Without Ref. Mode BR 15 12

TABLE II: Systematic uncertainties on BR(B0 !
J= K(�)0�+��).

The uncertainty on the reference mode branching ratio
does not enter into the ratio of branching ratios but it
is the dominant uncertainty for the branching ratio mea-
surements. It is 11% for J= K�0 and 14% for J= K0

S.
The signal modes have more helicity degrees of freedom
than the reference modes and the relative contributions
of possible helicity states are not known. This introduces
an uncertainty in the eÆciencies modeled with the Monte
Carlo simulation of 9:9% for J= K�0�+�� and 9:4% for
J= K0

S�
+��. There is a 5% uncertainty in both sig-

nal modes due to uncertainties in the trigger model used
in the Monte Carlo. Multiple decay modes could con-
tribute to the �nal states studied here but they all have
similar reconstruction eÆciencies. Varying the relative
compositions in the Monte Carlo results in a net un-
certainty of 5%. The e�ect of di�ering pT (B) spectra
from variousB production models introduces a 3% uncer-
tainty. Varying the �tted signal width and the width of
the broad Gaussian shaped background by �10% in the
B0 ! J= K�0�+�� sample results in a 7:5% variation in
the �tted signal size and is thus included as a systematic
uncertainty. Varying the signal width by �20% in the
B0 ! J= K0

S�
+�� sample has less than a 2% e�ect and

thus is neglected. The J= K0
S�

0 and J= K�+�� branch-
ing ratios assume no interference in their overlap region
in the K0

S�
+�� Dalitz plot. Completely constructive in-

terference would increase their combined branching ratio
by � 20%; a 10% systematic uncertainty is included in

each mode to account for this possibility.
The most statistically signi�cant mode, J= K�0�+��,

has a signi�cance of 3:7�. J= K0
S�

+�� has a signi�cance
of 3:3�; its submodes J= K0

S�
0 and J= K�+�� show

hints of a signal but have less than 2� signi�cance. The
measured branching ratios are large enough that these
modes should be visible in the data already recorded by
the CLEO, Belle, and BaBar experiments. CDF should
record hundreds of these decays in Run II.
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